AP 2007 AI (1/2)
$1.0 \mathrm{Geg}: D=7,00 \cdot 10^{2} \mathrm{Nm}^{-1} ; F_{\max }=42,0 \mathrm{~N} ; \mathrm{m}_{1}=20,0 \mathrm{~g}$
$1.1 \quad W_{s p}=1 / 2 D S_{m}^{2} ; S_{m}=\frac{F_{\max }}{D}$

$$
\begin{aligned}
& W_{s p}=1 / 2 \cdot D \cdot\left(\frac{I_{\max }}{D}\right)^{2}=\frac{1}{2} \cdot \frac{F_{\max }^{2}}{D}=\frac{1}{2} \cdot \frac{(42,0 \mathrm{~N})^{2}}{7,00 \cdot 10^{2} \mathrm{Nm}^{-1}} \\
& W_{s p}=1,26 \mathrm{~J}
\end{aligned}
$$

$1.2 w_{s p} \longrightarrow E_{\text {kin }} ;$ also $\frac{1}{2} m_{1} v_{0}^{2}=w_{s p} \Leftrightarrow v_{0}=\sqrt{\frac{2 w_{s p}}{m_{1}}}$

$$
V_{0}=\sqrt{\frac{2 \cdot 1,26 \mathrm{~g}}{0,0200 \mathrm{~kg}}=11,2 \frac{\mathrm{~m}}{\mathrm{~s}}} \quad \frac{\mathrm{~J}}{\mathrm{~kg}}=\frac{\mathrm{Nm}}{\mathrm{~kg}}=\frac{\left.(\mathrm{kg} m)^{\mathrm{kg} \mathrm{~s}^{2}}\right)^{\mathrm{N}}}{\mathrm{~m}}
$$

1.3.0 Geg: $h_{0}=1.50 \mathrm{~m} ; v_{0}=11,2 \frac{\mathrm{~m}}{\mathrm{~s}} \quad(\overline{\text { FeIB }}=0)$
1.3.1 Ges: Bahnturve

$$
\begin{aligned}
& x(t)=v_{0} t \Leftrightarrow t=\frac{x}{v_{0}} \quad \text { in } y=\frac{1}{2} g t^{2}=\frac{1}{2} g\left(\frac{x}{r_{0}}\right)^{2} \\
& y(x)=\frac{1}{2} \cdot \frac{9,81 m^{-2}}{\left(11,2 m j^{-1}\right)^{2} x^{2}}=0,0391 \frac{1}{m} x^{2} \sqrt{y} \sqrt{~}^{x}
\end{aligned}
$$

1.3.2 Ges: $x$ wure für $y=h_{0}$

$$
h_{0}=0,0391 \frac{1}{\mathrm{~m}} x_{\omega}^{2} \Leftrightarrow x_{\omega}=\sqrt{\frac{h_{0}}{0,0391 \mathrm{mi}^{-}}}=\sqrt{\frac{1,50 \mathrm{~m}}{0,0381 \mathrm{~m}^{-1}}}
$$

$$
x_{w}=6,19 \mathrm{~m}
$$

Alt: $t_{\text {Fall }}=\sqrt{\frac{2 h_{0}}{g}}$ in $x_{\omega}=v_{0} \cdot t_{\text {Fal }}=v_{0} \cdot \sqrt{\frac{2 h_{0}}{g}}=\ldots$
1.3.3 $F_{w}=50 \cdot 10^{-3} \mathrm{~N} \quad$ (Gegenwind in $x$-Richtung)
$y$-Richfung wie zuvor: $t_{F_{a l}}=\sqrt{\frac{2 h_{0}}{g}}=\sqrt{\frac{2 \cdot 1,5 m}{S, 81 \frac{m}{s^{2}}}}=$
$x$-Richtung: Verzōgerte Bew.

$$
x(t)=-\frac{1}{2} a t^{2}+v_{0} t \quad \text { mit } a=\frac{F_{\omega}}{m}
$$

$$
=-\frac{F_{0}}{2 m} \cdot t^{2}+v_{0} t
$$

$$
\begin{aligned}
& x_{\omega}(0,553 \mathrm{~s})=-\frac{50 \cdot 10^{-3} \mathrm{~N}}{2 \cdot 0,0200 \mathrm{~kg}} \cdot(0,553 \mathrm{~s})^{2}+11,2 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0,553 \mathrm{~s} \\
&=5,8 \mathrm{~m}
\end{aligned}
$$

2.0 Geg: Pendellänge $e$; Max. Auslenturi. $x$; $m$; $m g$
2.1 Beim Eindringen wird die Kin. Energie des Geschosses (zum grôßten Teil) in Deformatiousarbeit (und damit Wärme) umgewandelt. Ein (geringe) Auteil an mech. Energie verbreibt als Ekin.
2.2. Beim Eindringen: Tupulserhaltung:

$$
\begin{aligned}
p^{\prime}=p & \Rightarrow\left(m+m_{g}\right) u=m_{g} \cdot v_{G} \\
& \Leftrightarrow v_{g}=\frac{1}{m_{g}}\left(m+m_{g}\right) \cdot u
\end{aligned}
$$

Die kin. Energie nach dem Eindringen wird uber Hubarbeit in Epot uberfuint (Energieerh.)

$$
\begin{aligned}
E_{\text {kin }} \longrightarrow E_{\text {pot }} & \Leftrightarrow \frac{1}{2}\left(m_{G}+m\right) u^{2}=\left(m_{G}+m\right) g h \\
& \Leftrightarrow u^{2}=2 g h(* *)
\end{aligned}
$$

h wird uber die Geomefie der Anordnung ber.:

$\operatorname{in}(*)$

$$
v_{g}=\frac{m_{G}+m}{m g} \cdot \sqrt{2 g e(1-\cos \alpha)} \quad(\text { Beh. })
$$

